Affiliation:
1. Departments of Radiology,
2. Medicine, and
3. Biochemistry, Center for Magnetic Resonance Research and General Clinical Research Center, University of Minnesota, Minneapolis, Minnesota 55455
Abstract
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux ( V PDH), 0.57 ± 0.06 μmol · g−1 · min−1, was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate ( V x, 0.57 ± 0.19 μmol · g−1 · min−1), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMRGlc(ox)] was 0.41 ± 0.03 μmol · g−1 · min−1, and (glial) pyruvate carboxylation ( V PC) was 0.09 ± 0.02 μmol · g−1 · min−1. The flux through glutamine synthetase ( V syn) was 0.26 ± 0.06 μmol · g−1 · min−1. A fraction of V syn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission ( V NT) was 0.17 ± 0.05 μmol · g−1 · min−1. The ratio [ V NT/CMRGlc(ox)] was 0.41 ± 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (∼90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
286 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献