CNS β3-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight

Author:

Richard Jennifer E.1,López-Ferreras Lorena12,Chanclón Belén1,Eerola Kim1,Micallef Peter1,Skibicka Karolina P.12,Wernstedt Asterholm Ingrid1ORCID

Affiliation:

1. Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; and

2. Wallenberg Centre for Molecular and Translational Medicine in Gothenburg, Sweden

Abstract

Pharmacological β3-adrenergic receptor (β3AR) activation leads to increased mitochondrial biogenesis and activity in white adipose tissue (WAT), a process commonly referred to as “browning”, and transiently increased insulin release. These effects are associated with improved metabolic function and weight loss. It is assumed that this impact of β3AR agonists is mediated solely through activation of β3ARs in adipose tissue. However, β3ARs are also found in the brain, in areas such as the brain stem and the hypothalamus, which provide multisynaptic innervation to brown and white adipose depots. Thus, contrary to the current adipocentric view, the central nervous system (CNS) may also have the ability to regulate energy balance and metabolism through actions on central β3ARs. Therefore, this study aimed to elucidate whether CNS β3ARs can regulate browning of WAT and other aspects of metabolic regulation, such as food intake control and insulin release. We found that acute central injection of β3AR agonist potently reduced food intake, body weight, and increased hypothalamic neuronal activity in rats. Acute central β3AR stimulation was also accompanied by a transient increase in circulating insulin levels. Moreover, subchronic central β3AR agonist treatment led to a browning response in both inguinal (IWAT) and gonadal WAT (GWAT), along with reduced GWAT and increased BAT mass. In high-fat, high-sugar-fed rats, subchronic central β3AR stimulation reduced body weight, chow, lard, and sucrose water intake, in addition to increasing browning of IWAT and GWAT. Collectively, our results identify the brain as a new site of action for the anorexic and browning impact of β3AR activation.

Funder

Vetenskapsrådet (Swedish Research Council)

Novo Nordisk

VINNOVA

Ragnar Soderbergs stiftelse (Ragnar Söderberg Foundation)

Harald and Greta Jeansson Foundation

Swedish Diabetes Foundation

Åke Wiberg Foundation

Diabetes Wellness and Research Foundation

Magnus Bergvall Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3