Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation

Author:

Schakman O.12,Dehoux M.1,Bouchuari S.1,Delaere S.1,Lause P.1,Decroly N.1,Shoelson S. E.3,Thissen J.-P.1

Affiliation:

1. Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;

2. Laboratory of Cell Physiology, Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium;

3. Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts

Abstract

Several catabolic states (sepsis, cancer, etc.) associated with acute inflammation are characterized by a loss of skeletal muscle due to accelerated proteolysis. The main proteolytic systems involved are the autophagy and the ubiquitin-proteasome (UPS) pathways. Among the signaling pathways that could mediate proteolysis induced by acute inflammation, the transcription factor NF-κB, induced by TNFα, and the transcription factor forkhead box O (FOXO), induced by glucocorticoids (GC) and inhibited by IGF-I, are likely to play a key role. The aim of this study was to identify the nature of the molecular mediators responsible for the induction of these muscle proteolytic systems in response to acute inflammation caused by LPS injection. LPS injection robustly stimulated the expression of several components of the autophagy and the UPS pathways in the skeletal muscle. This induction was associated with a rapid increase of circulating levels of TNFα together with a muscular activation of NF-κB followed by a decrease in circulating and muscle levels of IGF-I. Neither restoration of circulating IGF-I nor restoration of muscle IGF-I levels prevented the activation of autophagy and UPS genes by LPS. The inhibition of TNFα production and muscle NF-κB activation, respectively by using pentoxifilline and a repressor of NF-κB, did not prevent the activation of autophagy and UPS genes by LPS. Finally, inhibition of GC action with RU-486 blunted completely the activation of these atrogenes by LPS. In conclusion, we show that increased GC production plays a more crucial role than decreased IGF-I and increased TNFα/NF-κB pathway for the induction of the proteolytic systems caused by acute inflammation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3