Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles

Author:

Buse Maria G.12,Robinson Katherine A.1,Marshall Bess A.34,Hresko Richard C.4,Mueckler Mike M.4

Affiliation:

1. Division of Endocrinology, Departments ofMedicine, Diabetes, and Medical Genetics and

2. Biochemistry/ Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Division of Endocrinology and Metabolism, Departments of

3. Pediatrics and

4. Cell Biology and Physiology, School of Medicine, Washington University, St. Louis, Missouri 63110

Abstract

O-linked glycosylation on Ser/Thr with single N-acetylglucosamine ( O-GlcNAcylation) is a reversible modification of many cytosolic/nuclear proteins, regulated in part by UDP-GlcNAc levels. Transgenic (T) mice that overexpress GLUT1 in muscle show increased basal muscle glucose transport that is resistant to insulin stimulation. Muscle UDP-GlcNAc levels are increased. To assess whether GLUT4 is a substrate for O-GlcNAcylation, we translated GLUT4 mRNA (mutated at the N-glycosylation site) in rabbit reticulocyte lysates supplemented with [35S]methionine. O-GlcNAcylated proteins were galactosylated and separated by lectin affinity chromatography; >20% of the translated GLUT4 appeared to be O-GlcNAcylated. To assess whether GLUT4 or GLUT4-associated proteins were O-GlcNAcylated in muscles, muscle membranes were prepared from T and control (C) mice labeled with UDP-[3H]galactose and immunoprecipitated with anti-GLUT4 IgG (or nonimmune serum), and N-glycosyl side chains were removed enzymatically. Upon SDS-PAGE, several bands showed consistently two- to threefold increased labeling in T vs. C. Separating galactosylated products by lectin chromatography similarly revealed approximately threefold more O-GlcNAc-modified proteins in T vs. C muscle membranes. RL-2 immunoblots confirmed these results. In conclusion, chronically increased glucose flux, which raises UDP-GlcNAc in muscle, results in enhanced O-GlcNAcylation of membrane proteins in vivo. These may include GLUT4 and/or GLUT4-associated proteins and may contribute to insulin resistance in this model.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3