Characterization of the portal signal in a nonsteady hyperglycemic state in conscious dogs

Author:

Ogihara N.1,Ebihara S.1,Kawamura W.1,Okamoto M.1,Sakai T.1,Takiguchi K.1,Morita T.1,Uchida R.1,Matsuyama Y.2,Hayashi Y.3,Arakawa Y.3,Kikuchi M.1

Affiliation:

1. Department of Endocrinology and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, Tokyo 160-0023;

2. Department of Health Science, Department of Biostatistics, Kyoto University School of Public Health, Kyoto 606-8501; and

3. Third Department of Internal Medicine, Nihon University, Tokyo 173-8610, Japan

Abstract

To characterize the “portal signal” in a nonsteady hyperglycemic state, the kinetic relationship between net hepatic glucose balance (NHGB) and either hepatic glucose load (HGL) or plasma insulin level was determined during glucose infusion using a catheter technique in 36 conscious dogs. Glucose was infused intraportally (Po group) and peripherally (Pe group) at 39, 56, and 83 μmol · kg−1 · min−1over 2 h. There was a linear relationship between mean NHGB and either mean HGL or plasma insulin levels at each rate in either delivery (HGL: Po r = 0.99, Pe r = 0.95; insulin: Po r = 99, Pe r = 0.79). The threshold levels for net hepatic glucose uptake were 3.8 and 11.7 mmol/l for plasma glucose and 65 and 392 pmol/l for plasma insulin, respectively. The slope of the regression line against the abscissa was four times larger in portal than in peripheral delivery (HGL: Po 0.20 vs. Pe 0.05, P < 0.05; insulin: Po 0.19 vs. Pe 0.04, P < 0.05). These results suggest that the portal signal overrules the threshold of glucose for hepatic uptake by increasing hepatic extraction rate in a nonsteady hyperglycemic state.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3