Opposite-sex housing reactivates the declining GnRH system in aged transgenic male mice with FGF signaling deficiency

Author:

Rochester Johanna R.1,Chung Wilson C. J.1,Hayes Tyrone B.2,Tsai Pei-San1

Affiliation:

1. Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and

2. Department of Integrative Biology, University of California, Berkeley, California

Abstract

The continued presence of gonadotropin-releasing hormone (GnRH) neurons is required for a healthy reproductive lifespan, but factors that maintain postnatal GnRH neurons have not been identified. To begin to understand these factors, we investigated whether 1) fibroblast growth factor (FGF) signaling and 2) interactions with the opposite sex are involved in the maintenance of the postnatal GnRH system. A transgenic mouse model (dnFGFR mouse) with the targeted expression of a dominant-negative FGF receptor (dnFGFR) in GnRH neurons was used to examine the consequence of FGF signaling deficiency on postnatal GnRH neurons. Male dnFGFR mice suffered a significant loss of postnatal GnRH neurons within the first 100 days of life. Interestingly, this loss was reversed after cohabitation with female, but not male, mice for 300–550 days. Along with a rescue in GnRH neuron numbers, opposite-sex housing in dnFGFR males also increased hypothalamic GnRH peptide levels, promoted a more mature GnRH neuronal morphology, facilitated litter production, and enhanced testicular morphology. Last, mice hypomorphic for FGFR3 exhibited a similar pattern of postnatal GnRH neuronal loss as dnFGFR males, suggesting FGF signaling acts, in part, through FGFR3 to enhance the maintenance of the postnatal GnRH system. In summary, we have shown that FGF signaling is required for the continued presence of postnatal GnRH neurons. However, this requirement is not absolute, since sexual interactions can compensate for defects in FGFR signaling, thereby rescuing the declining GnRH system. This suggests the postnatal GnRH system is highly plastic and capable of responding to environmental stimuli throughout adult life.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3