The lowering of hepatic fatty acid uptake improves liver function and insulin sensitivity without affecting hepatic fat content in humans

Author:

Rigazio Sara,Lehto Hanna-Riikka,Tuunanen Helena,Någren Kjell,Kankaanpaa Mikko,Simi Claudia,Borra Ronald,Naum Alexandru G.,Parkkola Riitta,Knuuti Juhani,Nuutila Pirjo,Iozzo Patricia

Abstract

Lipolysis may regulate liver free fatty acid (FFA) uptake and triglyceride accumulation; both are potential causes of insulin resistance and liver damage. We evaluated whether 1) systemic FFA release is the major determinant of liver FFA uptake in fasting humans in vivo and 2) the beneficial metabolic effects of FFA lowering can be explained by a reduction in liver triglyceride content. Sixteen healthy subjects were subdivided in two groups of similar characteristics to undergo positron emission tomography with [11C]acetate and [11C]palmitate to quantify liver FFA metabolism ( n = 8), or magnetic resonance spectroscopy (MRS) to measure hepatic fat content ( n = 8), before and after the acute lowering of circulating FFAs by using the antilipolytic agent acipimox. MRS was again repeated after a 1-wk treatment period. Acipimox suppressed FFA levels while stimulating hepatic fractional extraction of FFAs ( P < 0.05). As a result, fasting liver FFA uptake was decreased by 79% ( P = 0.0002) in tight association with lipolysis ( r = 0.996, P < 0.0001). The 1-wk treatment induced a significant improvement in systemic (+30%) and liver (+70%) insulin sensitivity ( P < 0.05) and decreased circulating triglycerides (−20%, P = 0.06) and liver enzymes (ALT −20%, P = 0.03). No change in liver fat content was observed after either acute or sustained FFA suppression. We conclude that acute and sustained inhibitions of lipolysis and liver FFA uptake fail to deplete liver fat in healthy human subjects. Liver FFA uptake was decreased in proportion to FFA delivery. As a consequence, liver and systemic insulin sensitivity were improved, together with liver function, independently of changes in hepatic triglyceride accumulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3