Endothelium-derived microparticles inhibit angiogenesis in the heart and enhance the inhibitory effects of hypercholesterolemia on angiogenesis

Author:

Ou Zhi-Jun12,Chang Feng-Jun23,Luo Dan23,Liao Xiao-Long23,Wang Zhi-Ping23,Zhang Xi23,Xu Ying-Qi23,Ou Jing-Song23

Affiliation:

1. Division of Hypertension and Vascular Diseases,

2. Key Laboratory of Assisted Circulation, Ministry of Health, and

3. Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

Therapeutic angiogenesis remains unsuccessful in coronary artery disease. It is known that plasma endothelium-derived microparticles (EMPs) are increased in coronary artery disease and that hypercholesterolemia can inhibit angiogenesis. We evaluated the relationship between EMPs and hypercholesterolemia in the impairment of angiogenesis. EMPs isolated from human umbilical vein endothelial cells were injected into low-density lipoprotein receptor-null (LDLr−/−) mice fed a Western diet for 2 wk and C57BL6 mice for 6 h or were directly added to the tissue culture media. Hearts isolated from mice were sectioned and cultured, and endothelial tube formation was measured. The expression and phosphorylation of endothelial NO synthase (eNOS) and the generation of NO in the hearts were determined. Angiogenesis was inhibited by pathophysiological concentrations of EMPs but not physiological concentrations of EMPs in hearts from C57BL6 mice. However, angiogenesis was inhibited by EMPs at both physiological and pathophysiological concentrations of EMPs in hearts from hypercholesterolemic LDLr−/−mice. Pathophysiological concentrations of EMPs decreased eNOS phosphorylation at Ser1177and NO generation without altering eNOS expression in hearts from C57BL6 mice. Both physiological and pathophysiological concentrations of EMPs decreased not only eNOS phosphorylation at Ser1177and NO generation, but eNOS expression in hypercholesterolemic hearts from LDLr−/−mice. These data demonstrated that pathophysiological concentrations of EMPs could inhibit angiogenesis in hearts by decreasing eNOS activity. EMPs and hypercholesterolemia mutually enhanced their inhibitory effect of angiogenesis by inducing eNOS dysfunction. Our findings suggest a novel mechanism by which hypercholesterolemia impairs angiogenesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3