Improved blood glucose disposal and altered insulin secretion patterns in adenosine A1receptor knockout mice

Author:

Yang Gary K.1,Fredholm Bertil B.2,Kieffer Timothy J.1,Kwok Yin Nam1

Affiliation:

1. Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; and

2. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by the inability of the pancreatic β-cells to secrete enough insulin to meet the demands of the body. Therefore, research of potential therapeutic approaches to treat T2DM has focused on increasing insulin output from β-cells or improving systemic sensitivity to circulating insulin. In this study, we examined the role of the A1receptor in glucose homeostasis with the use of A1receptor knockout mice (A1R−/−). A1R−/−mice exhibited superior glucose tolerance compared with wild-type controls. However, glucose-stimulated insulin release, insulin sensitivity, weight gain, and food intake were comparable between the two genotypes. Following a glucose challenge, plasma glucagon levels in wild-type controls decreased, but this was not observed in A1R−/−mice. In addition, pancreas perfusion with oscillatory glucose levels of 10-min intervals produced a regular pattern of pulsatile insulin release with a 10-min cycling period in wild-type controls and 5 min in A1R−/−mice. When the mice were fed a high-fat diet (HFD), both genotypes exhibited impaired glucose tolerance and insulin resistance. Increased insulin release was observed in HFD-fed mice in both genotypes, but increased glucagon release was observed only in HFD-fed A1R−/−mice. In addition, the regular patterns of insulin release following oscillatory glucose perfusion were abolished in HFD-fed mice in both genotypes. In conclusion, A1receptors in the pancreas are involved in regulating the temporal patterns of insulin release, which could have implications in the development of glucose intolerance seen in T2DM.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3