Affiliation:
1. UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
2. Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington
Abstract
The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin’s role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T3). We report that, as with leptin, normalization of circulating T3 levels is sufficient both to increase energy expenditure, respiratory quotient, and ambulatory activity and to reduce torpor in ob/ob mice. Yet, unlike leptin, infusing T3 at a dose that normalizes plasma T3 levels fails to prevent the fall of core temperature during mild cold exposure. Because thermal conductance (e.g., heat loss to the environment) was reduced by administration of leptin but not T3, leptin regulation of heat dissipation is implicated as playing a uniquely important role in thermoregulation. Together, these findings identify a key role in thermoregulation for leptin-mediated suppression of thermal conduction via a mechanism that is independent of the thyroid axis.
Funder
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献