Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy

Author:

Lang Charles H.1,Pruznak Anne1,Navaratnarajah Maithili1,Rankine Kristina A.1,Deiter Gina1,Magne Hugues2,Offord Elizabeth A.2,Breuillé Denis2

Affiliation:

1. Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and

2. Nestlé Research Center, Lausanne, Switzerland

Abstract

Muscle disuse atrophy is observed routinely in patients recovering from traumatic injury and can be either generalized resulting from extended bed rest or localized resulting from single-limb immobilization. The present study addressed the hypothesis that a diet containing 5% α-hydroxyisocaproic acid (α-HICA), a leucine (Leu) metabolite, will slow the loss and/or improve recovery of muscle mass in response to disuse. Adult 14-wk-old male Wistar rats were provided a control diet or an isonitrogenous isocaloric diet containing either 5% α-HICA or Leu. Disuse atrophy was produced by unilateral hindlimb immobilization (“casting”) for 7 days and the contralateral muscle used as control. Rats were also casted for 7 days and permitted to recover for 7 or 14 days. Casting decreased gastrocnemius mass, which was associated with both a reduction in protein synthesis and S6K1 phosphorylation as well as enhanced proteasome activity and increased atrogin-1 and MuRF1 mRNA. Although neither α-HICA nor Leu prevented the casting-induced muscle atrophy, the decreased muscle protein synthesis was not observed in α-HICA-treated rats. Neither α-HICA nor Leu altered the increased proteasome activity and atrogene expression observed with immobilization. After 14 days of recovery, muscle mass had returned to control values only in the rats fed α-HICA, and this was associated with a sustained increase in protein synthesis and phosphorylation of S6K1 and 4E-BP1 of previously immobilized muscle. Proteasome activity and atrogene mRNA content were at control levels after 14 days and not affected by either treatment. These data suggest that whereas α-HICA does not slow the loss of muscle produced by disuse, it does speed recovery at least in part by maintaining an increased rate of protein synthesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3