Mechanism of insulin's anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures

Author:

Chow Lisa S.,Albright Robert C.,Bigelow Maureen L.,Toffolo Gianna,Cobelli Claudio,Nair K. Sreekumaran

Abstract

Despite being an anabolic hormone in skeletal muscle, insulin's anticatabolic mechanism in humans remains controversial, with contradictory reports showing either stimulation of protein synthesis (PS) or inhibition of protein breakdown (PB) by insulin. Earlier measurements of muscle PS and PB in humans have relied on different surrogate measures of aminoacyl-tRNA and intracellular pools. We report that insulin's effect on muscle protein turnover using aminoacyl-tRNA as the precursor of PS and PB is calculated by mass balance of tracee amino acid (AA). We compared the results calculated from various surrogate measures. To determine the physiological role of insulin on muscle protein metabolism, we infused tracers of leucine and phenylalanine into 18 healthy subjects, and after 3 h, 10 subjects received a 4-h femoral arterial infusion of insulin (0.125 mU·kg−1·min−1), while eight subjects continued with saline. Tracer-to-tracee ratios of leucine, phenylalanine, and ketoisocaproate were measured in the arterial and venous plasma, muscle tissue fluid, and AA-tRNA to calculate muscle PB and PS. Insulin infusion, unlike saline, significantly reduced the efflux of leucine and phenylalanine from muscle bed, based on various surrogate measures which agreed with those based on leucyl-tRNA (−28%), indicating a reduction in muscle PB ( P < 0.02) without any significant effect on muscle PS. In conclusion, using AA-tRNA as the precursor pool, it is demonstrated that, in healthy humans in the postabsorptive state, insulin does not stimulate muscle protein synthesis and confirmed that insulin achieves muscle protein anabolism by inhibition of muscle protein breakdown.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3