Ammonia metabolism during intense dynamic exercise and recovery in humans

Author:

Graham T. E.1,Bangsbo J.1,Gollnick P. D.1,Juel C.1,Saltin B.1

Affiliation:

1. August Krogh Institute, Copenhagen, Denmark.

Abstract

This study examined the dynamics for ammonia (NH3) metabolism in human skeletal muscle during and after intense one-legged exercise. Subjects (n = 8) performed dynamic leg extensor exercise to exhaustion (3.2 min). Muscle NH3 release increased rapidly to a maximum of 314 +/- 42 mumol/min and declined immediately on cessation of exercise. Recovery was complete in approximately 20 min. Arterial [NH3] increased less rapidly and reached its maximum 2-3 min into recovery. These data demonstrate that NH3 clearance is more sensitive to the cessation of exercise than is NH3 release from skeletal muscle. Muscle [NH3] increased three to fourfold during exercise and represented 74 +/- 8% of the total net NH3 formation. Thus the change in muscle [NH3] alone underestimates the NH3 production. There was no evidence that the muscle-to-venous blood NH3 ratio shifts in accordance with the H+ data. Thus other factors must contribute to the NH3 release from active muscle. The total net NH3 formed corresponded with the intramuscular inosine 5'-monophosphate accumulation, suggesting that the NH3 was derived from AMP deamination. Changes in the known modulators of AMP deaminase (ATP, ADP, H+) were moderate, so the mechanisms initiating the deamination remain obscure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3