Promyelocytic leukemia inhibits adipogenesis, and loss of promyelocytic leukemia results in fat accumulation in mice

Author:

Kim Myung K.1,Yang Shutong1,Lee Kyoung-Hwa12,Um Jee-Hyun1,Liu Mengyang13,Kang Hyeog1,Park Sung Jun1,Chung Jay H.1

Affiliation:

1. Laboratory of Obesity and Aging Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland;

2. Ischemic-Hypoxic Disease Institute, Medical Research Center, Seoul National University, Seoul, South Korea; and

3. Trinity School of Arts and Sciences, Duke University, Durham, North Carolina

Abstract

The function of the tumor suppressor promyelocytic leukemia (PML) protein is disrupted in promyelocytic leukemia. PML has been reported to function as a negative regulator of mTOR (mammalian target of rapamycin) and nuclear Akt under some conditions. mTOR and Akt pathways regulate a diverse array of pathways, including those that control insulin signaling, energy metabolism, growth, cellular survival, and lifespan. Although the PML-mTOR/Akt link suggests that PML may have metabolic functions in the whole organism, very little is known about the metabolic functions of PML. Here we report that PML−/−mice did not show any significant metabolic defects. There was no impairment in the mTOR/Akt or AMPK signaling in white adipose tissue, liver, or muscle. However, despite having normal food intake and activity levels, PML−/−mice gained body weight faster and had more fat mass, particularly subcutaneous fat mass, in the diet-induced obesity model. Using in vitro adipogenesis models, we discovered that PML is a suppressor of adipogenesis. PML expression decreased during adipogenesis and was undetectable in fully differentiated adipocytes. Loss of PML increased expression of the adipogenic transcription factors CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ. We found that the Sirt1-NCor-SMRT corepressor complex, which represses pparg transcription, does not bind to the pparg promoter efficiently upon PML depletion. On the basis of these findings, we propose that PML is a negative regulator of the adipogenic transcription factors and that, in times of energy excess, PML may limit fat accumulation by suppressing the differentiation of preadipocytes into adipocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3