Linearity of β-cell response across the metabolic spectrum and to pharmacology: insights from a graded glucose infusion-based investigation series

Author:

Shankar Sudha S.1,Shankar R. Ravi1,Mixson Lori A.1,Miller Deborah L.1,Chung Christopher1,Cilissen Caroline2,Beals Chan R.1,Stoch S. Aubrey1,Steinberg Helmut O.1,Kelley David E.1

Affiliation:

1. Merck & Company, Inc., Kenilworth, New Jersey; and

2. Merck Sharp & Dohme Corp. (Europe), Brussels, Belgium

Abstract

The graded glucose infusion (GGI) examines insulin secretory response patterns to continuously escalating glycemia. The current study series sought to more fully appraise its performance characteristics. Key questions addressed were comparison of the GGI to the hyperglycemic clamp (HGC), comparison of insulin secretory response patterns across three volunteer populations known to differ in β-cell function (healthy nonobese, obese nondiabetic, and type 2 diabetic), and characterization of effects of known insulin secretagogues in the context of a GGI. Insulin secretory response was measured as changes in insulin, C-peptide, insulin secretion rates (ISR), and ratio of ISR to prevailing glucose (ISR/G). The GGI correlated well with the HGC ( r = 0.72 for ISR/G, P < 0.01). The insulin secretory response in type 2 diabetes (T2DM) was significantly blunted ( P < 0.001), whereas it was significantly increased in obese nondiabetics compared with healthy nonobese ( P < 0.001). Finally, robust ( P < 0.001 over placebo) pharmacological effects were observed in T2DM and healthy nonobese volunteers. Collectively, the findings of this investigational series bolster confidence that the GGI has solid attributes for assessing insulin secretory response to glucose across populations and pharmacology. Notably, the coupling of insulin secretory response to glycemic changes was distinctly and uniformly linear across populations and in the context of insulin secretagogues. (Clinical Trial Registration Nos. NCT00782418, NCT01055340, NCT01373450)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3