Inflammation during obesity is not all bad: evidence from animal and human studies

Author:

Ye Jianping1,McGuinness Owen P.2

Affiliation:

1. Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana; and

2. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee

Abstract

Chronic inflammation is a characteristic of obesity and is associated with accompanying insulin resistance, a hallmark of type 2 diabetes mellitus (T2DM). Although proinflammatory cytokines are known for their detrimental effects on adipose tissue function and insulin sensitivity, their beneficial effects in the regulation of metabolism have not drawn sufficient attention. In obesity, inflammation is initiated by a local hypoxia to augment angiogenesis and improve adipose tissue blood supply. A growing body of evidence suggests that macrophages and proinflammatory cytokines are essential for adipose remodeling and adipocyte differentiation. Phenotypes of multiple lines of transgenic mice consistently suggest that proinflammatory cytokines increase energy expenditure and act to prevent obesity. Removal of proinflammatory cytokines by gene knockout decreases energy expenditure and induces adult-onset obesity. In contrast, elevation of proinflammatory cytokines augments energy expenditure and decreases the risk for obesity. Anti-inflammatory therapies have been tested in more than a dozen clinical trials to improve insulin sensitivity and glucose homeostasis in patients with T2DM, and the results are not encouraging. One possible explanation is that anti-inflammatory therapies also attenuate the beneficial effects of inflammation in stimulating energy expenditure, which may have limited the efficacy of the treatment by promoting energy accumulation. Thus, the positive effects of proinflammatory events should be considered in evaluating the impact of inflammation in obesity and type 2 diabetes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3