Effects of amino acids on synthesis and degradation of skeletal muscle proteins in humans

Author:

Svanberg E.1,Moller-Loswick A. C.1,Matthews D. E.1,Korner U.1,Andersson M.1,Lundholm K.1

Affiliation:

1. Department of Surgery, Sahlgrenska University Hospital, University of Goteborg, Sweden.

Abstract

Synthesis and degradation of globular and myofibrillar proteins across arm and leg muscles were examined during stepwise increased intravenous infusion of amino acids (0.1, 0.2, 0.4, and 0.8 g N.kg-1.day-1) to healthy volunteers. Protein dynamics were measured by a primed constant infusion of L-[ring-2H5]phenylalanine and the release of 3-methylhistidine from skeletal muscles. Arterial concentrations and flux of glucose, lactate, and free fatty acids were unchanged despite increasing concentrations of plasma amino acids from 2.6 to 5.7 mM. Plasma insulin, insulin-like growth factor I (IGF-I), and plasma concentrations of IGF-I-binding proteins-1 and -3 remained at fasting levels throughout the investigation. Amino acid infusion caused a significant uptake of the majority of amino acids across arm and leg tissues, except tyrosine, tryptophan, and cysteine, probably due to low concentrations of these amino acids in the formulation. The balance of globular proteins improved significantly (P < 0.01) due to stimulation of synthesis and attenuation of degradation across arm and leg tissues, despite insignificant uptake of tyrosine, tryptophan, and cysteine. Degradation of myofibrillar proteins was uninfluenced by provision of amino acids. The results demonstrate that neither insulin nor circulating IGF-I explained improved protein balance in skeletal muscles after elevation of plasma amino acids. Rather, some amino acids in themselves trigger cellular reactions that initiate peptide formation. Limited availability of some extracellular amino acids was overcome by increased reutilization of the intracellular amino acid.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3