Affiliation:
1. Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
Abstract
Several lines of evidence support the view that the premotor sympathetic input to the adrenal gland arises from the rostroventrolateral medulla (RVLM). The aim of this study was to determine whether RVLM neurons play a role in glucose homeostasis. We identified RVLM neurons that control epinephrine secretion by searching for medullospinal neurons that responded to neuroglucoprivation induced by systemic 2-deoxyglucose (2-DG) administration. We tested the effect of disinhibition of the RVLM on arterial blood pressure and plasma glucose concentration. RVLM medullospinal barosensitive neurons ( n = 17) were either unaffected or slightly inhibited by 2-DG. In contrast, we found a group ( n = 6) of spinally projecting neurons that were excited by 2-DG administration. These neurons were not barosensitive and had spinal conduction velocities in the unmyelinated range (<1 m/s). These neurons may mediate epinephrine secretion and participate in the counterregulatory responses to neuroglucoprivation. To test the hypothesis that activation of the RVLM leads to adrenomedullary activation and subsequent hyperglycemia, we applied the GABAA antagonist bicuculline to the RVLM and measured blood pressure, heart rate, and blood glucose in rats with intact adrenals or after bilateral adrenalectomy. Disinhibition of the RVLM resulted in hypertension, tachycardia, and hyperglycemia (4.9 ± 0.3 to 14.7 ± 0.9 mM, n = 5, P < 0.05). Adrenalectomy significantly reduced the hyperglycemic response but did not alter the cardiovascular responses. These data suggest that the RVLM is a key component of the neurocircuitry that is recruited in the counterregulatory response to hypoglycemia.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献