Rostroventrolateral medullary neurons modulate glucose homeostasis in the rat

Author:

Verberne A. J. M.1,Sartor D. M.1

Affiliation:

1. Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia

Abstract

Several lines of evidence support the view that the premotor sympathetic input to the adrenal gland arises from the rostroventrolateral medulla (RVLM). The aim of this study was to determine whether RVLM neurons play a role in glucose homeostasis. We identified RVLM neurons that control epinephrine secretion by searching for medullospinal neurons that responded to neuroglucoprivation induced by systemic 2-deoxyglucose (2-DG) administration. We tested the effect of disinhibition of the RVLM on arterial blood pressure and plasma glucose concentration. RVLM medullospinal barosensitive neurons ( n = 17) were either unaffected or slightly inhibited by 2-DG. In contrast, we found a group ( n = 6) of spinally projecting neurons that were excited by 2-DG administration. These neurons were not barosensitive and had spinal conduction velocities in the unmyelinated range (<1 m/s). These neurons may mediate epinephrine secretion and participate in the counterregulatory responses to neuroglucoprivation. To test the hypothesis that activation of the RVLM leads to adrenomedullary activation and subsequent hyperglycemia, we applied the GABAA antagonist bicuculline to the RVLM and measured blood pressure, heart rate, and blood glucose in rats with intact adrenals or after bilateral adrenalectomy. Disinhibition of the RVLM resulted in hypertension, tachycardia, and hyperglycemia (4.9 ± 0.3 to 14.7 ± 0.9 mM, n = 5, P < 0.05). Adrenalectomy significantly reduced the hyperglycemic response but did not alter the cardiovascular responses. These data suggest that the RVLM is a key component of the neurocircuitry that is recruited in the counterregulatory response to hypoglycemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3