Prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in muscle of neonatal piglets

Author:

Naberhuis Jane K.1,Suryawan Agus1,Nguyen Hanh V.1,Hernandez-Garcia Adriana1,Cruz Stephanie M.2,Lau Patricio E.2,Olutoye Oluyinka O.2,Stoll Barbara1,Burrin Douglas G.1,Fiorotto Marta L.1,Davis Teresa A.1ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas

2. Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas

Abstract

Postnatal growth of lean mass is commonly blunted in preterm infants and may contribute to short- and long-term morbidities. To determine whether preterm birth alters the protein anabolic response to feeding, piglets were delivered at term or preterm, and fractional protein synthesis rates (Ks) were measured at 3 days of age while fasted or after an enteral meal. Activation of signaling pathways that regulate protein synthesis and degradation were determined. Relative body weight gain was lower in preterm than in term. Gestational age at birth (GAB) did not alter fasting plasma glucose or insulin, but when fed, plasma insulin and glucose rose more slowly, and reached peak value later, in preterm than in term. Feeding increased Ksin longissimus dorsi (LD) and gastrocnemius muscles, heart, pancreas, and kidney in both GAB groups, but the response was blunted in preterm. In diaphragm, lung, jejunum, and brain, feeding increased Ksregardless of GAB. Liver Kswas greater in preterm than term and increased with feeding regardless of GAB. In all tissues, changes in 4EBP1, S6K1, and PKB phosphorylation paralleled changes in Ks. In LD, eIF4E·eIF4G complex formation, phosphorylation of TSC2, mTOR, and rpS6, and association of mammalian target of rapamycin (mTOR1) complex with RagA, RagC, and Rheb were increased by feeding and blunted by prematurity. There were no differences among groups in LD protein degradation markers. Our results demonstrate that preterm birth reduces weight gain and the protein synthetic response to feeding in muscle, pancreas, and kidney, and this is associated with blunted insulin- and/or amino acid-induced translation initiation signaling.

Funder

HHS | NIH | National Institute of Child Health and Human Development

USDA | National Institute of Food and Agriculture

U.S. Department of Agriculture

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3