Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin

Author:

Allard Michael F.1,Wambolt Richard B.1,Longnus Sarah L.1,Grist Mark1,Lydell Carmen P.1,Parsons Hannah L.1,Rodrigues Brian2,Hall Jennifer L.3,Stanley William C.4,Bondy Gregory P.1

Affiliation:

1. Cardiovascular Research Laboratory, Department of Pathology and Laboratory Medicine, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6;

2. Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3;

3. Cardiovascular Research Institute, Morehouse Medical School, Atlanta, Georgia, 30310; and

4. Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970

Abstract

We determined the effect of insulin on the fate of glucose and contractile function in isolated working hypertrophied hearts from rats with an aortic constriction ( n = 27) and control hearts from sham-operated rats ( n = 27). Insulin increased glycolysis and glycogen in control and hypertrophied hearts. The change in glycogen was brought about by increased glycogen synthesis and decreased glycogenolysis in both groups. However, the magnitude of change in glycolysis, glycogen synthesis, and glycogenolysis caused by insulin was lower in hypertrophied hearts than in control hearts. Insulin also increased glucose oxidation and contractile function in control hearts but not in hypertrophied hearts. Protein content of glucose transporters, protein kinase B, and phosphatidylinositol 3-kinase was not different between the two groups. Thus hypertrophied hearts are less responsive to the metabolic and functional effects of insulin. The reduced responsiveness involves multiple aspects of glucose metabolism, including glycolysis, glucose oxidation, and glycogen metabolism. The absence of changes in content of key regulatory molecules indicates that other sites, pathways, or factors regulating glucose utilization are responsible for these findings.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3