Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation

Author:

Benthem Lambertus1,Keizer Klaasjan1,Wiegman Coen H.2,de Boer Sietse F.1,Strubbe Jan H.1,Steffens Anton B.1,Kuipers Folkert2,Scheurink Anton J. W.1

Affiliation:

1. Departments of Animal Physiology and

2. Pediatrics, University of Groningen, NL-9700AB Groningen, The Netherlands

Abstract

We tested the hypothesis that excessive portal venous supply of long-chain fatty acids to the liver contributes to the development of insulin resistance via activation of the hypothalamus-pituitary-adrenal axis (HPA axis) and sympathetic system. Rats received an intraportal infusion of the long-chain fatty acid oleate (150 nmol/min, 24 h), the medium-chain fatty acid caprylate, or the solvent. Corticosterone (Cort) and norepinephrine (NE) were measured as indexes for HPA axis and sympathetic activity, respectively. Insulin sensitivity was assessed by means of an intravenous glucose tolerance test (IVGTT). Oleate infusion induced increases in plasma Cort (Δ = 13.5 ± 3.6 μg/dl; P < 0.05) and NE (Δ = 235 ± 76 ng/l; P < 0.05), whereas caprylate and solvent had no effect. The area under the insulin response curve to the IVGTT was larger in the oleate-treated group than in the caprylate and solvent groups (area = 220 ± 35 vs. 112 ± 13 and 106 ± 8, respectively, P < 0.05). The area under the glucose response curves was comparable [area = 121 ± 13 (oleate) vs. 135 ± 20 (caprylate) and 96 ± 11 (solvent)]. The results are consistent with the concept that increased portal free fatty acid is involved in the induction of visceral obesity-related insulin resistance via activation of the HPA axis and sympathetic system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3