Effect of CCK pretreatment on the CCK sensitivity of rat polymodal gastric vagal afferent in vitro

Author:

Wei Jen Yu1,Wang Yu Hua1

Affiliation:

1. Digestive Diseases Division, Department of Medicine, Center for Ulcer Research and Education/Digestive Diseases Research Center and Brain Research Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095

Abstract

To prevent the blood-borne interference and reflex actions via neighboring organs and the central nervous system, the study was conducted in an in vitro isolated stomach-gastric vagus nerve preparation obtained from overnight-fasted, urethan-anesthetized rats. Afferent unit action potentials were recorded from the gastric branch of the vagus nerve. The left gastric artery was catheterized for intra-arterial injection. In vitro we found that 1) 55/70 gastric vagal afferents (GVAs) were polymodal, responding to CCK-8 and mechanical stimuli, 13 were mechanoreceptive, and 2 were CCK-responsive; 2) sequential or randomized intra-arterial injections of CCK-8 (0.1–200 pmol) dose-dependently increased firing rate and reached the peak rate at 100 pmol; 3) the action was suppressed by CCK-A (Devazepide) but not by CCK-B (L-365,260) receptor antagonist; 4) neither antagonist blocked the mechanosensitivity of GVA fibers. These results are consistent with corresponding in vivo well-documented findings. Histological data indicate that the layered structure of the stomach wall was preserved in vitro for 6–8 h. Based on these results, it seems reasonable to use the in vitro preparation for conducting a study that is usually difficult to be performed in vivo. For instance, because there was no blood supply in vitro, the composition of the interstitial fluid, i.e., the ambient nerve terminals, can be better controlled and influenced by intra-arterial injection of a defined solution. Here we report that acutely changing the ambient CCK level by a conditioning stimulus (a preceding intra-arterial injection of increasing doses of CCK-8) reduced the CCK sensitivity of GVA terminals to a subsequent test stimulus (a constant dose of CCK-8 intra-arterial injection).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3