Hyperinsulinemia compensates for infection-induced impairment in net hepatic glucose uptake during TPN

Author:

Donmoyer Christine M.1,Chen Sheng-Song1,Hande Scott A.1,Lacy D. Brooks1,Ejiofor Joseph1,McGuinness Owen P.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Abstract

In animals receiving total parenteral nutrition (TPN), infection impairs net hepatic glucose uptake (NHGU) by 40% and induces mild hyperinsulinemia. In the normal animal, the majority of the glucose taken up by the liver is diverted to lactate, but in the infected state, lactate release is curtailed. Because of the hyperinsulinemia and reduced NHGU, more glucose is utilized by peripheral tissues. Our aims were to determine the role of infection-induced hyperinsulinemia in 1) limiting the fall in NHGU and hepatic lactate release and 2) increasing the proportion of glucose disposed of by peripheral tissues. Chronically catheterized dogs received TPN for 5 days via the inferior vena cava. On day 3, a fibrin clot with a nonlethal dose of E. coli was placed into the peritoneal cavity; sham dogs received a sterile clot. On day 5, somatostatin was infused to prevent endogenous pancreatic hormone secretion, and insulin and glucagon were replaced at rates matching incoming hormone concentrations observed previously in sham or infected dogs. The TPN-derived glucose infusion was adjusted to maintain a constant arterial plasma glucose level of ∼120 mg/dl. after a basal blood sampling period, the insulin infusion rate was either maintained constant (infected time control, Hi-Ins, n = 6; sham time control, Sham, n = 6) or decreased (infected + reduced insulin, Lo-Ins; n = 6) for 180 min to levels seen in noninfected dogs (from 23 ± 2 to 12 ± 1 μU/ml). Reduction of insulin to noninfected levels decreased NHGU by 1.4 ± 0.5 mg · kg−1· min−1( P < 0.05) and nonhepatic glucose utilization by 4.8 ± 0.8 mg · kg−1· min−1( P < 0.01). The fall in NHGU was caused by a decline in HGU (Δ−0.6 ± 0.4 mg · kg−1· min−1) and a concomitant increase in hepatic glucose production (HGP, Δ0.8 ± 0.5 mg · kg−1· min−1); net hepatic lactate release was not altered. Hyperinsulinemia that accompanies infection 1) primarily diverts glucose carbon to peripheral tissues, 2) limits the fall in NHGU by enhancing HGU and suppressing HGP, and 3) does not enhance hepatic lactate release, thus favoring hepatic glucose storage. Compensatory hyperinsulinemia plays a critical role in facilitating hepatic and peripheral glucose disposal during an infection.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3