Pulsatile changes in free fatty acids augment hepatic glucose production and preserves peripheral glucose homeostasis

Author:

Hsu Isabel R.1,Zuniga Edward1,Bergman Richard N.1

Affiliation:

1. Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California

Abstract

Recent studies in animal and human models have revealed that free fatty acid (FFA) release from adipose tissue is oscillatory. We have shown in our laboratory that these oscillations are controlled by the sympathetic nervous system (SNS). Although FFAs have been shown to directly stimulate glucose production [endogenous glucose production (EGP)] by the liver and to reduce peripheral glucose utilization, whether the specific pattern of FFA release affects glucose metabolism is unknown. The aim of this study was to examine the effects of pulsatile vs. constant infusion of FFA on glucose homeostasis in the canine model. Euglycemic clamps with basal insulin replacement (0.1 mU·kg−1·min−1 insulin) were performed in dogs ( n = 8) during infusion of saline (SAL) or the medium-chain fatty acid octanoate, which was given by either pulsatile infusion (PUL: 10 mmol over 2 min every 10 min) or continuous infusion (C-INF: 1 mmol/min) designed to achieve equivalent total FFA mass. Endogenous lipolytic pulses were suppressed with the β3-specific adrenergic receptor antagonist bupranolol. PUL infusion elicited a pulsatile pattern of FFA in circulation with average maximum pulse height of 0.82 ± 0.04 mM, whereas C-INF FFA levels reached 0.47 ± 0.03 mM (fasting levels) and were maintained throughout. Glucose uptake was not affected by PUL; however, C-INF significantly reduced glucose uptake compared with both SAL and PUL. Steady-state EGP increased by >90% from basal steady state during PUL but did not change during either SAL or C-INF. Thus, pulsatile FFA infusion led to an increase in EGP while preserving glucose disposal. These data suggest that the pattern of FFA may have a role in regulation of glucose homeostasis, which may have consequences in the obese or insulin-resistant state where the SNS is known to be altered.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of improved glucose handling after metabolic surgery: the big 6;Surgery for Obesity and Related Diseases;2016-07

2. A Kinetic Model of Whole-Body Glucose Metabolism with Reference to the Domestic Dog (Canis lupus familiaris);International Scholarly Research Notices;2015-06-08

3. Models for the Study of Whole-Body Glucose Kinetics: A Mathematical Synthesis;ISRN Biomathematics;2013-05-28

4. Higher Acute Insulin Response to Glucose May Determine Greater Free Fatty Acid Clearance in African-American Women;The Journal of Clinical Endocrinology & Metabolism;2011-08

5. Current World Literature;Current Opinion in Endocrinology, Diabetes & Obesity;2011-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3