Signaling and cytotoxic functions of 4-hydroxyalkenals

Author:

Riahi Yael1,Cohen Guy1,Shamni Ofer1,Sasson Shlomo1

Affiliation:

1. Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel

Abstract

The peroxidation of n-3 and n-6 polyunsaturated fatty acids (PUFAs) and of their hydroperoxy metabolites is a complex process. It is initiated by free oxygen radical-induced abstraction of a hydrogen atom from the lipid molecule followed by a series of nonenzymatic reactions that ultimately generate the reactive aldehyde species 4-hydroxyalkenals. The molecule 4-hydroxy- 2E-hexenal (4-HHE) is generated by peroxidation of n-3 PUFAs, such as linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. The aldehyde product 4-hydroxy-2 E-nonenal (4-HNE) is the peroxidation product of n-6 PUFAs, such as arachidonic and linoleic acids and their 15-lipoxygenase metabolites, namely 15-hydroperoxyeicosatetraenoic acid (15-HpETE) and 13-hydroperoxyoctadecadienoic acid (13-HpODE). Another reactive peroxidation product is 4-hydroxy-2 E,6 Z-dodecadienal (4-HDDE), which is derived from 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the 12-lipoxygenase metabolite of arachidonic acid. Hydroxyalkenals, notably 4-HNE, have been implicated in various pathophysiological interactions due to their chemical reactivity and the formation of covalent adducts with macromolecules. The progressive accumulation of these adducts alters normal cell functions that can lead to cell death. The lipophilicity of these aldehydes positively correlates to their chemical reactivity. Nonetheless, at low and noncytotoxic concentrations, these molecules may function as signaling molecules in cells. This has been shown mostly for 4-HNE and to some extent for 4-HHE. The capacity of 4-HDDE to generate such “mixed signals” in cells has received less attention. This review addresses the origin and cellular functions of 4-hydroxyalkernals.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3