Contribution of nitric oxide to cutaneous microvascular dilation in individuals with type 2 diabetes mellitus

Author:

Sokolnicki Lynn A.,Roberts Shelly K.,Wilkins Bradley W.,Basu Ananda,Charkoudian Nisha

Abstract

Microvascular pathophysiology associated with type 2 diabetes mellitus (T2DM) contributes to several aspects of the morbidity associated with the disease. We quantified the contribution of nitric oxide (NO) to the cutaneous vasodilator response to nonpainful local warming in subjects with T2DM (average duration of diabetes mellitus 7 ± 1 yr) and in age-matched control subjects. We measured skin blood flow in conjunction with intradermal microdialysis of NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or vehicle during 35 min of local warming to 42°C. Microdialysis of sodium nitroprusside (SNP) was used for assessment of maximum cutaneous vascular conductance (CVC). Resting CVC was higher in T2DM subjects at vehicle sites (T2DM: 19 ± 2 vs. control: 11 ± 3%maxCVC; P < 0.05); this difference was abolished by l-NAME (T2DM: 10 ± 1 vs. control: 8 ± 1%maxCVC; P > 0.05). The relative contribution of NO to the vasodilator response to local warming was not different between groups (T2DM: 46 ± 4 vs. control: 44 ± 6%maxCVC; P > 0.05). However, absolute CVC during local warming was ∼25% lower in T2DM subjects (T2DM: 1.79 ± 0.15 AU/mmHg; controls: 2.42 ± 0.20 AU/mmHg; P < 0.01), and absolute CVC during SNP was ∼20% lower (T2DM: 1.91 ± 0.12 vs. control: 2.38 ± 0.13 AU/mmHg; P < 0.01). We conclude that the relative contribution of NO to vasodilation during local warming is similar between subjects with T2DM and control subjects, although T2DM was associated with a lower absolute maximum vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3