Differential impact of selective GH deficiency and endogenous GH excess on insulin-mediated actions in muscle and liver of male mice

Author:

Cordoba-Chacon Jose12,Gahete Manuel D.123,McGuinness Owen P.4,Kineman Rhonda D.12

Affiliation:

1. Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois;

2. Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois;

3. Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, and CIBER de la Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain; and

4. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee

Abstract

A reciprocal relationship between insulin sensitivity and glucose tolerance has been reported in some mouse models and humans with isolated changes in growth hormone (GH) production and signaling. To determine if this could be explained in part by tissue-specific changes in insulin sensitivity, hyperinsulinemic-euglycemic clamps were performed in mice with adult-onset, isolated GH deficiency and in mice with elevated endogenous GH levels due to somatotrope-specific loss of IGF-I and insulin receptors. Our results demonstrate that circulating GH levels are negatively correlated with insulin-mediated glucose uptake in muscle but positively correlated with insulin-mediated suppression of hepatic glucose production. A positive relationship was also observed between GH levels and endpoints of hepatic lipid metabolism known to be regulated by insulin. These results suggest hepatic insulin resistance could represent an early metabolic defect in GH deficiency.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3