Author:
Tchkonia Tamara,Pirtskhalava Tamar,Thomou Thomas,Cartwright Mark J.,Wise Barton,Karagiannides Iordanes,Shpilman Alexander,Lash Timothy L.,Becherer J. David,Kirkland James L.
Abstract
Fat depot sizes peak in middle age but decrease by advanced old age. This phenomenon is associated with ectopic fat deposition, decreased adipocyte size, impaired differentiation of preadipocytes into fat cells, decreased adipogenic transcription factor expression, and increased fat tissue inflammatory cytokine generation. To define the mechanisms contributing to impaired adipogenesis with aging, we examined the release of TNFα, which inhibits adipogenesis, and the expression of CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), which blocks activity of adipogenic C/EBP family members, in preadipocytes cultured from young, middle-aged, and old rats. Medium conditioned by fat tissue, as well as preadipocytes, from old rats impeded lipid accumulation by preadipocytes from young animals. More TNFα was released by preadipocytes from old than young rats. Differences in TNFα-converting enzyme, TNFα degradation, or the presence of macrophages in cultures were not responsible. TNFα induced rat preadipocyte CHOP expression. CHOP was higher in undifferentiated preadipocytes from old than younger animals. Overexpression of CHOP in young rat preadipocytes inhibited lipid accumulation. TNFα short interference RNA reduced CHOP and partially restored lipid accumulation in old rat preadipocytes. CHOP normally increases during late differentiation, potentially modulating the process. This late increase in CHOP was not affected substantially by aging: CHOP was similar in differentiating preadipocytes and fat tissue from old and young animals. Hypoglycemia, which normally causes an adaptive increase in CHOP, was less effective in inducing CHOP in preadipocytes from old than younger animals. Thus increased TNFα release by undifferentiated preadipocytes with elevated basal CHOP contributes to impaired adipogenesis with aging.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献