Author:
Jung Seung-Ryoung,Reed Benjamin J.,Sweet Ian R.
Abstract
Calcium (Ca2+) influx is required for the sustained secretion of insulin and is accompanied by a large rate of energy usage. We hypothesize that the energy usage reflects a process [Ca2+/metabolic coupling process (CMCP)] that couples Ca2+ to insulin secretion by pancreatic islets. The aim of the study was to test this hypothesis by testing the effect of inhibiting candidate Ca2+-sensitive proteins proposed to play a critical role in the CMCP. The effects of the inhibitors on oxygen consumption rate (OCR), a reflection of ATP usage, and insulin secretion rate (ISR) were compared with those seen when L-type Ca2+ channels were blocked with nimodipine. We reasoned that if a downstream Ca2+-regulated site was responsible for the OCR associated with the CMCP, then its inhibition should mimic the effect of nimodipine. Consistent with previous findings, nimodipine decreased glucose-stimulated OCR by 36% and cytosolic Ca2+ by 46% and completely suppressed ISR in rat pancreatic islets. Inhibitors of three calmodulin-sensitive proteins (myosin light-chain kinase, calcineurin, and Ca2+/calmodulin-dependent protein kinase II) did not meet the criteria. In contrast, KN-62 severed the connection between Ca2+ influx, OCR, and ISR without interfering with Ca2+ influx. In the presence of nimodipine or KN-62, potentiators of ISR, acetylcholine, GLP-1, and arginine had little effect on insulin secretion, suggesting that the CMCP is also essential for the amplification of ISR. In conclusion, a KN-62-sensitive process directly mediates the effects of Ca2+ influx via L-type Ca2+ channels on OCR and ISR, supporting the essential role of the CMCP in mediating ISR.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献