Affiliation:
1. Department of Electronics and Informatics, University of Padova, 35131 Padova; and
2. Scientific Institute San Raffaele, 20132 Milano, Italy
Abstract
The intravenous glucose tolerance test (IVGTT) single-compartment minimal model (1CMM) method has recently been shown to overestimate glucose effectiveness and underestimate insulin sensitivity. Undermodeling, i.e., use of single- instead of two-compartment description of glucose kinetics, has been advocated to explain these limitations. We describe a new two-compartment minimal model (2CMM) into which we incorporate certain available knowledge on glucose kinetics. 2CMM is numerically identified using a Bayesian approach. Twenty-two standard IVGTT (0.30 g/kg) in normal humans were analyzed. In six subjects, the clamp-based index of insulin sensitivity ([Formula: see text]) was also measured. 2CMM glucose effectiveness ([Formula: see text]) and insulin sensitivity ([Formula: see text]) were, respectively, 60% lower ( P < 0.0001) and 35% higher ( P < 0.0001) than the corresponding 1CMM [Formula: see text] and[Formula: see text] indexes: 2.81 ± 0.29 (SE) vs.[Formula: see text] = 4.27 ± 0.33 ml ⋅ min−1 ⋅ kg−1and [Formula: see text] = 11.67 ± 1.71 vs.[Formula: see text] = 8.68 ± 1.62 102ml ⋅ min−1 ⋅ kg−1per μU/ml. [Formula: see text] was not different from[Formula: see text] = 12.61 ± 2.13 102ml ⋅ min−1 ⋅ kg−1per μU/ml (nonsignificant), whereas [Formula: see text]was 60% lower ( P < 0.02). In conclusion, a new 2CMM has been presented that improves the accuracy of glucose effectiveness and insulin sensitivity estimates of the classic 1CMM from a standard IVGTT in normal humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献