Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss

Author:

Kelley David E.1,Goodpaster Bret1,Wing Rena R.2,Simoneau Jean-Aime3

Affiliation:

1. Departments of Medicine and

2. Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and

3. Division of Kinesiology, Department of Social and Preventive Medicine, Laval University, Ste-Foy, Quebec, Canada G1K 7P4

Abstract

The current study was undertaken to investigate fatty acid metabolism by skeletal muscle to examine potential mechanisms that could lead to increased muscle triglyceride in obesity. Sixteen lean and 40 obese research volunteers had leg balance measurement of glucose and free fatty acid (FFA) uptake (fractional extraction of [9,103H]oleate) and indirect calorimetry across the leg to determine substrate oxidation during fasting and insulin-stimulated conditions. Muscle obtained by percutaneous biopsy had lower carnitine palmitoyl transferase (CPT) activity and oxidative enzyme activity in obesity ( P < 0.05). During fasting conditions, obese subjects had an elevated leg respiratory quotient (RQ, 0.83 ± 0.02 vs. 0.90 ± 0.01; P < 0.01) and reduced fat oxidation but similar FFA uptake across the leg. During insulin infusions, fat oxidation by leg tissues was suppressed in lean but not obese subjects; rates of FFA uptake were similar. Fasting values for leg RQ correlated with insulin sensitivity ( r = −0.57, P < 0.001). Thirty-two of the obese subjects were restudied after weight loss (WL, −14.0 ± 0.9 kg); insulin sensitivity and insulin suppression of fat oxidation improved ( P < 0.01), but fasting leg RQ (0.90 ± 0.02 vs. 0.90 ± 0.02, pre-WL vs. post-WL) and muscle CPT activity did not change. The findings suggest that triglyceride accumulation in skeletal muscle in obesity derives from reduced capacity for fat oxidation and that inflexibility in regulating fat oxidation, more than fatty acid uptake, is related to insulin resistance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3