Affiliation:
1. Department of Physiology and Biochemistry, School of Medicine, University of São Paulo, 14049–900 Ribeirão Preto, São Paulo, Brazil
Abstract
Overall proteolysis and the activity of skeletal muscle proteolytic systems were investigated in rats submitted to guanethidine-induced adrenergic blockade for 4 days. In soleus, overall proteolysis increased by 15–20% during the first 2 days of guanethidine treatment but decreased to levels below control values after 4 days. Extensor digitorum longus (EDL) did not show the initial increase in total proteolysis, which was already reduced after 2 days of guanethidine treatment. The initial rise in the rate of protein degradation in soleus was accompanied by an increased activity of the Ca2+-dependent proteolytic pathway. In both soleus and EDL, the reduction in overall proteolysis was paralleled by decreased activities of the Ca2+-dependent and ATP-dependent proteolytic processes. No change was observed in the activity of the lysosomal proteolytic system. Overall proteolysis in soleus and EDL from nontreated rats was partially inhibited by isoproterenol, in vitro. The data suggest an acute inhibitory control of skeletal muscle proteolysis by the adrenergic system, well evident in the oxidative muscle, with an important participation of the Ca2+-dependent pathway.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献