Role of AT1 receptors and autonomic nervous system in mediating acute pressor responses to ANG II in anesthetized mice

Author:

Bivalacqua Trinity J.1,Dalal Ajay1,Champion Hunter C.1,Kadowitz Philip J.1

Affiliation:

1. Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112

Abstract

Hemodynamic responses to angiotensin II and the role of AT1 and AT2 receptors and the autonomic nervous system in mediating acute responses to angiotensin II were investigated in anesthetized CD1 mice. Injections of angiotensin II caused dose-related increases in systemic arterial pressure that were antagonized by candesartan. Pressor responses to angiotensin II were not altered by PD-123,319 in doses up to 25 mg/kg iv. At the lowest dose studied (20 μg/kg iv), the inhibitory effects of candesartan were competitive, whereas at the highest dose (100 μg/kg iv) the dose-response curve for angiotensin II was shifted to the right in a nonparallel manner with inhibitory effects that could not be surmounted. The inhibitory effects of candesartan were selective and were similar in animals pretreated with enalaprilat (1 mg/kg iv) to reduce endogenous angiotensin II production. Acute pressor responses to angiotensin II were not altered by propranolol (200 μg/kg iv), phentolamine (200 μg/kg iv), or atropine (1 mg/kg iv) but were enhanced by hexamethonium (5 mg/kg iv). Increases in total peripheral resistance induced by angiotensin II were inhibited by the AT1-receptor antagonist but were not altered by AT2-, α-, or β-receptor antagonists. These results suggest that acute pressor responses to angiotensin II are mediated by AT1 receptors, are buffered by the baroreceptors, and are not modulated by effects on AT2 receptors and that activation of the sympathetic nervous system plays little if any role in mediating rapid hemodynamic responses to the peptide in anesthetized CD1 mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3