The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment

Author:

Wilson Gabriel J.1,Bunpo Piyawan2,Cundiff Judy K.2,Wek Ronald C.3,Anthony Tracy G.12

Affiliation:

1. Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey;

2. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Evansville, Indiana; and

3. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Indianapolis, Indianapolis, Indiana

Abstract

Asparaginase is an important drug in the treatment regimen for acute lymphoblastic leukemia. Asparaginase depletes circulating asparagine and glutamine, activating an amino acid stress response (AAR) involving phosphorylation of eukaryotic initiation factor 2 (eIF2) by general control nonderepressible kinase 2 (GCN2). We hypothesized that GCN2 functions to mitigate hepatic stress during asparaginase therapy by activating the AAR. To test this idea, C57BL/6J wild-type mice ( Gcn2+/+) and those deleted for Gcn2 ( Gcn2−/−) were injected with asparaginase or saline excipient one time daily for 1 or 6 days. In liver, increased phosphorylation of eIF2 and mRNA expression of AAR target genes activating transcription factor 4, asparagine synthetase, eIF4E-binding protein 1, and CAAT enhancer-binding protein homologous protein were significantly blunted or blocked in the liver of G cn2−/− mice. Loss of AAR during asparaginase coincided with increases in mammalian target of rapamycin signaling, hepatic triglyceride accumulation, and DNA damage in association with genetic markers of oxidative stress ( glutathione peroxidase) and inflammation ( tumor necrosis factor alpha-α). Although asparaginase depleted circulating asparagine in both Gcn2+/+ and Gcn2−/− mice, all other amino acids, including plasma glutamine, were elevated in the plasma of Gcn2−/− mice. This study shows that loss of GCN2 promotes oxidative stress and inflammatory-mediated DNA damage during asparaginase therapy, suggesting that patients with reduced or dysfunctional AAR may be at risk of developing hepatic complications during asparaginase treatment.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3