Affiliation:
1. Department of Molecular Physiology and Biophysics, and Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
Abstract
The purpose of this study was to determine whether the sedentary dog is able to autoregulate glucose production (Ra) in response to non-insulin-induced changes (<20 mg/dl) in arterial glucose. Dogs had catheters implanted >16 days before study. Protocols consisted of basal (−30 to 0 min) and bilateral renal arterial phloridzin infusion (0–180 min) periods. Somatostatin was infused, and glucagon and insulin were replaced to basal levels. In one protocol (Phl ± Glc), glucose was allowed to fall from t = 0–90 min. This was followed by a period when glucose was infused to restore euglycemia (90–150 min) and a period when glucose was allowed to fall again (150–180 min). In a second protocol (EC), glucose was infused to compensate for the renal glucose loss due to phloridzin and maintain euglycemia from t = 0–180 min. Arterial insulin, glucagon, cortisol, and catecholamines remained at basal in both protocols. In Phl ± Glc, glucose fell by ∼20 mg/dl by t = 90 min with phloridzin infusion. Radid not change from basal in Phl ± Glc despite the fall in glucose for the first 90 min. Rawas significantly suppressed with restoration of euglycemia from t = 90–150 min ( P < 0.05) and returned to basal when glucose was allowed to fall from t = 150–180 min. Radid not change from basal in EC. In conclusion, the liver autoregulates Rain response to small changes in glucose independently of changes in pancreatic hormones at rest. However, the liver of the resting dog is more sensitive to a small increment, rather than decrement, in arterial glucose.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献