On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells

Author:

Quesada Ivan1,Fuentes Esther1,Andreu Etelvina1,Meda Paolo2,Nadal Angel1,Soria Bernat13

Affiliation:

1. Institute of Bioengineering, Miguel Hernandez University, 03550 San Juande Alicante, Spain;

2. Department of Morphology, University of Geneva, 1211 Geneva 4, Switzerland; and

3. Department of Surgery, National University of Singapore, National University Hospital, Singapore 119074

Abstract

Pancreatic β-cells constitute a well-communicating multicellular network that permits a coordinated and synchronized signal transmission within the islet of Langerhans that is necessary for proper insulin release. Gap junctions are the molecular keys that mediate functional cellular connections, which are responsible for electrical and metabolic coupling in the majority of cell types. Although the role of gap junctions in β-cell electrical coupling is well documented, metabolic communication is still a matter of discussion. Here, we have addressed this issue by use of a fluorescence recovery after photobleaching (FRAP) approach. This technique has been validated as a reliable and noninvasive approach to monitor functional gap junctions in real time. We show that control pancreatic islet cells did not exchange a gap junction-permeant molecule in either clustered cells or intact islets of Langerhans under conditions that allowed cell-to-cell exchange of current-carrying ions. Conversely, we have detected that the same probe was extensively transferred between islet cells of transgenic mice expressing connexin 32 (Cx32) that have enhanced junctional coupling properties. The results indicate that the electrical coupling of native islet cells is more extensive than dye communication. Dye-coupling domains in islet cells appear more restricted than previously inferred with other methods.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3