Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans

Author:

Boon Hanneke1,Kostovski Emil23,Pirkmajer Sergej1,Song Moshi1,Lubarski Irina4,Iversen Per O.56,Hjeltnes Nils2,Widegren Ulrika1,Chibalin Alexander V.1

Affiliation:

1. Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden;

2. Section for Spinal Cord Injury, Sunnaas Rehabilitation Hospital, Nesoddtangen;

3. Institute of Clinical Medicine, University of Oslo, Oslo, Norway;

4. Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel; and

5. Department of Nutrition, Institute of Basic Medical Sciences;

6. Department of Hematology, Oslo University Hospital, Ullevaal, Oslo, Norway

Abstract

Na+-K+-ATPase is an integral membrane protein crucial for the maintenance of ion homeostasis and skeletal muscle contractibility. Skeletal muscle Na+-K+-ATPase content displays remarkable plasticity in response to long-term increase in physiological demand, such as exercise training. However, the adaptations in Na+-K+-ATPase function in response to a suddenly decreased and/or habitually low level of physical activity, especially after a spinal cord injury (SCI), are incompletely known. We tested the hypothesis that skeletal muscle content of Na+-K+-ATPase and the associated regulatory proteins from the FXYD family is altered in SCI patients in a manner dependent on the severity of the spinal cord lesion and postinjury level of physical activity. Three different groups were studied: 1) six subjects with chronic complete cervical SCI, 2) seven subjects with acute, complete cervical SCI, and 3) six subjects with acute, incomplete cervical SCI. The individuals in groups 2 and 3 were studied at months 1, 3, and 12 postinjury, whereas individuals with chronic SCI were compared with an able-bodied control group. Chronic complete SCI was associated with a marked decrease in [3H]ouabain binding site concentration in skeletal muscle as well as reduced protein content of the α1-, α2-, and β1-subunit of the Na+-K+-ATPase. In line with this finding, expression of the Na+-K+-ATPase α1- and α2-subunits progressively decreased during the first year after complete but not after incomplete SCI. The expression of the regulatory protein phospholemman (PLM or FXYD1) was attenuated after complete, but not incomplete, cervical SCI. In contrast, FXYD5 was substantially upregulated in patients with complete SCI. In conclusion, the severity of the spinal cord lesion and the level of postinjury physical activity in patients with SCI are important factors controlling the expression of Na+-K+-ATPase and its regulatory proteins PLM and FXYD5.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3