Insulin secretion stimulated by l-arginine and its metabolite l-ornithine depends on Gαi2

Author:

Leiss Veronika1,Flockerzie Katarina1,Novakovic Ana1,Rath Michaela2,Schönsiegel Annika1,Birnbaumer Lutz3,Schürmann Annette2,Harteneck Christian1,Nürnberg Bernd1

Affiliation:

1. Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany;

2. Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany;

3. Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health/Department of Health and Human Services, Durham, North Carolina

Abstract

Bordetella pertussis toxin (PTx), also known as islet-activating protein, induces insulin secretion by ADP-ribosylation of inhibitory G proteins. PTx-induced insulin secretion may result either from inactivation of Gαo proteins or from combined inactivation of Gαo, Gαi1, Gαi2, and Gαi3 isoforms. However, the specific role of Gαi2 in pancreatic β-cells still remains unknown. In global (Gαi2−/−) and β-cell-specific (Gαi2βcko) gene-targeted Gαi2 mouse models, we studied glucose homeostasis and islet functions. Insulin secretion experiments and intracellular Ca2+ measurements were used to characterize Gαi2 function in vitro. Gαi2−/− and Gαi2βcko mice showed an unexpected metabolic phenotype, i.e., significantly lower plasma insulin levels upon intraperitoneal glucose challenge in Gαi2−/− and Gαi2βcko mice, whereas plasma glucose concentrations were unchanged in Gαi2−/− but significantly increased in Gαi2βcko mice. These findings indicate a novel albeit unexpected role for Gαi2 in the expression, turnover, and/or release of insulin from islets. Detection of insulin secretion in isolated islets did not show differences in response to high (16 mM) glucose concentrations between control and β-cell-specific Gαi2-deficient mice. In contrast, the two- to threefold increase in insulin secretion evoked by l-arginine or l-ornithine (in the presence of 16 mM glucose) was significantly reduced in islets lacking Gαi2. In accord with a reduced level of insulin secretion, intracellular calcium concentrations induced by the agonistic amino acid l-arginine did not reach control levels in β-cells. The presented analysis of gene-targeted mice provides novel insights in the role of β-cell Gαi2 showing that amino acid-induced insulin-release depends on Gαi2.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3