PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity

Author:

Lira Vitor A.1,Benton Carley R.2,Yan Zhen1,Bonen Arend2

Affiliation:

1. Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia; and

2. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

Abstract

The peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α (PGC-1α) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1α in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1α. To these ends, the following questions are addressed. 1) How is PGC-1α regulated, 2) what adaptations are indeed dependent on PGC-1α action, 3) is PGC-1α altered in insulin resistance, and 4) are PGC-1α-knockout and -transgenic mice suitable models for examining therapeutic potential of this coactivator? In skeletal muscle, an orchestrated signaling network, including Ca2+-dependent pathways, reactive oxygen species (ROS), nitric oxide (NO), AMP-dependent protein kinase (AMPK), and p38 MAPK, is involved in the control of contractile protein expression, angiogenesis, mitochondrial biogenesis, and other adaptations. However, the p38γ MAPK/PGC-1α regulatory axis has been confirmed to be required for exercise-induced angiogenesis and mitochondrial biogenesis but not for fiber type transformation. With respect to a potential insulin-sensitizing role of PGC-1α, human studies on type 2 diabetes suggest that PGC-1α and its target genes are only modestly downregulated (≤34%). However, studies in PGC-1α-knockout or PGC-1α-transgenic mice have provided unexpected anomalies, which appear to suggest that PGC-1α does not have an insulin-sensitizing role. In contrast, a modest (∼25%) upregulation of PGC-1α, within physiological limits, does improve mitochondrial biogenesis, fatty acid oxidation, and insulin sensitivity in healthy and insulin-resistant skeletal muscle. Taken altogether, there is substantial evidence that the p38γ MAPK-PGC-1α regulatory axis is critical for exercise-induced metabolic adaptations in skeletal muscle, and strategies that upregulate PGC-1α, within physiological limits, have revealed its insulin-sensitizing effects.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3