Identification of scavenger receptor BI as a potential screening candidate for congenital primary adrenal insufficiency in humans

Author:

Hoekstra Menno1ORCID

Affiliation:

1. Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands

Abstract

Glucocorticoids belong to the superfamily of steroid hormones that are synthesized from the common precursor cholesterol. Adrenal gland-derived glucocorticoids, e.g., cortisol in humans and corticosterone in rodents, contribute to various processes essential for normal daily life. Glucocorticoid deficiency, also referred to as primary adrenal insufficiency, therefore, often becomes evident early in life and can be present with hypoglycemia, a failure to thrive, recurrent development of infections, and neurological problems, such as seizures and coma. The majority of congenital primary adrenal insufficiency cases are caused by deleterious mutations in genes involved in the intracellular mobilization of cholesterol and the subsequent conversion of cholesterol into glucocorticoids. A significant number of glucocorticoid deficiency cases, however, cannot be explained by known genetic variations. This perspective highlights existing literature regarding the importance of lipoprotein-derived cholesterol acquisition through scavenger receptor class B, type I (SR-BI/SCARB1) for the maintenance of an optimal adrenal glucocorticoid function in mice and humans. On the basis of the reviewed findings, it is suggested that the SCARB1 gene should be included in the standard glucocorticoid deficiency genetic screening panel to 1) facilitate knowledge development on the relative contribution of SR-BI-mediated cholesterol acquisition to steroid hormone synthesis in humans and 2) open up the possibility to reclassify glucocorticoid deficiency patients without a currently known genetic cause for concomitant treatment optimization.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3