Author:
Ciaraldi Theodore P.,Oh Deborah K.,Christiansen Louis,Nikoulina Svetlana E.,Kong Alice P. S.,Baxi Sunita,Mudaliar Sunder,Henry Robert R.
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitous kinase implicated in both insulin action and adipogenesis. To determine how these multiple roles may relate to insulin resistance, we studied the regulation of GSK-3 protein expression and phosphorylation in skeletal muscle and isolated adipocytes from nonobese healthy control (HC), obese control (OC), and obese type 2 diabetic (OT2D) subjects. At baseline there were no differences in the GSK-3 protein expression in adipocytes. OC subjects underwent a 6-mo caloric restriction resulting in a 7% decrease in body mass index (BMI) and a 21% improvement in insulin-stimulated whole body glucose disposal rate (GDR). GSK-3α and GSK-3β expression decreased in adipocytes ( P < 0.05), whereas GSK-3α protein expression increased in skeletal muscle ( P < 0.05). OT2D subjects were treated with troglitazone or metformin for 3–4 mo. After troglitazone treatment GDR improved ( P < 0.05) despite an increase in BMI ( P < 0.05), whereas metformin had no significant effect on GDR. There was no significant change in GSK-3 expression in adipocytes following troglitazone, whereas both GSK-3α and -β were decreased in skeletal muscle ( P < 0.05). Metformin treatment had no significant impact on GSK-3 protein expression in either adipocytes or skeletal muscle. Neither treatment influenced GSK-3 serine phosphorylation in skeletal muscle or adipocytes. These results suggest that there is tissue specificity for the regulation of GSK-3 in humans. In skeletal muscle GSK-3 plays a role in control of metabolism and insulin action, whereas the function in adipose tissue is less clear.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献