Gene regulation of UDP-galactose synthesis and transport: potential rate-limiting processes in initiation of milk production in humans

Author:

Mohammad Mahmoud A.1,Hadsell Darryl L.1,Haymond Morey W.1

Affiliation:

1. Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas

Abstract

Lactose synthesis is believed to be rate limiting for milk production. However, understanding the molecular events controlling lactose synthesis in humans is still rudimentary. We have utilized our established model of the RNA isolated from breast milk fat globule from seven healthy, exclusively breastfeeding women from 6 h to 42 days following delivery to determine the temporal coordination of changes in gene expression in the carbohydrate metabolic processes emphasizing the lactose synthesis pathway in human mammary epithelial cell. We showed that milk lactose concentrations increased from 75 to 200 mM from 6 to 96 h. Milk progesterone concentrations fell by 65% at 24 h and were undetectable by day 3. Milk prolactin peaked at 36 h and then declined progressively afterward. In concordance with lactose synthesis, gene expression of galactose kinase 2, UDP-glucose pyrophosphorylase 2 (UGP2), and phosphoglucomutase 1 increased 18-, 10-, and threefold, respectively, between 6 and 72 h. Between 6 and 96 h, gene expression of UDP-galactose transporter 2 (SLC35A2) increased threefold, whereas glucose transporter 1 was unchanged. Gene expression of lactose synthase no. 3 increased 1.7-fold by 96 h, whereas α-lactalbumin did not change over the entire study duration. Gene expression of prolactin receptor (PRLR) and its downstream signal transducer and activator of transcription complex 5 (STAT5) were increased 10- and 2.5-fold, respectively, by 72 h. In summary, lactose synthesis paralleled the induction of gene expression of proteins involved in UDP-galactose synthesis and transport, suggesting that they are potentially rate limiting in lactose synthesis and thus milk production. Progesterone withdrawal may be the signal that triggers PRLR signaling via STAT5, which may in turn induce UGP2 and SLC35A2 expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3