An Extended Minimal Model of OGTT: Estimation of Alpha- and Beta-Cell Dysfunction, Insulin Resistance, and the Incretin Effect

Author:

Subramanian Vijaya1,Bagger Jonatan I2,Harihar Vinayak3,Holst Jens J4,Knop Filip K5,Vilsbøll Tina6

Affiliation:

1. Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States

2. Gentofte Hospital, University of Copenhagen (Copenhagen, Denmark), Denmark

3. Biophysics, University of California, Berkeley, United States

4. Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

5. Biomedical Sciences, University of Copenhagen, Denmark

6. Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark

Abstract

Loss of insulin sensitivity, alpha- and beta-cell dysfunction, and impairment in incretin effect have all been implicated in the pathophysiology of type 2 diabetes (T2D). Parsimonious mathematical models are useful in quantifying parameters related to the pathophysiology of T2D. Here we extend the minimum model developed to describe the glucose-insulin-glucagon dynamics in the intravenous glucose infusion (IIGI) experiment to the oral glucose tolerance test (OGTT). The extended model describes glucose and hormone dynamics in OGTT including the contribution of the incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), to insulin secretion. A new function describing glucose arrival from the gut is introduced. The model is fitted to OGTT data from 8 patients with T2D and 8 weight-matched control subjects (CS) without diabetes to obtain parameters related to insulin sensitivity, beta- and alpha-cell function. The parameters, i.e., measures of insulin sensitivity, a1, suppression of glucagon secretion, k1, magnitude of glucagon secretion, g2, and incretin-dependent insulin secretion, g3, were found to be significantly different between CS and T2D with p values < .002, < .017, < .009, < .004, respectively. A new rubric for estimating the incretin effect directly from modeling the OGTT is presented. The average incretin effect correlated well with the experimentally determined incretin effect with a Spearman Rank test correlation coefficient of .67 (p < .012). The average incretin effect was found to be significantly different between CS and T2D (p <.032). The developed model is shown to be effective in quantifying the factors relevant to T2D pathophysiology.

Funder

HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases

Merck

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3