Difference in skeletal muscle function in males vs. females: role of estrogen receptor-β

Author:

Glenmark Birgitta,Nilsson Maria,Gao Hui,Gustafsson Jan-Åke,Dahlman-Wright Karin,Westerblad Håkan

Abstract

Male skeletal muscles are generally faster and have higher maximum power output than female muscles. Conversely, during repeated contractions, female muscles are generally more fatigue resistant and recover faster. We studied the role of estrogen receptor-β (ERβ) in this gender difference by comparing contractile function of soleus (mainly slow-twitch) and extensor digitorum longus (fast-twitch) muscles isolated from ERβ-deficient (ERβ−/−) and wild-type mice of both sexes. Results showed generally shorter contraction and relaxation times in male compared with female muscles, and ERβ deficiency had no effect on this. Fatigue (induced by repeated tetanic contractions) and recovery of female muscles were not affected by ERβ deficiency. However, male ERβ−/− muscles were slightly more fatigue resistant and produced higher forces during the recovery period than wild-type male muscles. In fact, female muscles and male ERβ−/− muscles displayed markedly better recovery than male wild-type muscles. Gene screening of male soleus muscles showed 25 genes that were differently expressed in ERβ−/− and wild-type mice. Five of these genes were selected for further analysis: muscle ankyrin repeat protein-2, muscle LIM protein, calsequestrin, parvalbumin, and aquaporin-1. Expression of these genes showed a similar general pattern: increased expression in male and decreased expression in female ERβ−/− muscles. In conclusion, ERβ deficiency results in increased performance during fatigue and recovery of male muscles, whereas female muscles are not affected. Improved contractile performance of male ERβ−/− mouse muscles was associated with increased expression of mRNAs encoding important muscle proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3