Role of bradykinin B1 and B2 receptors in normal blood pressure regulation

Author:

Duka Arvi,Duka Irena,Gao Guohong,Shenouda Sherene,Gavras Irene,Gavras Haralambos

Abstract

With inhibition or absence of the bradykinin B2 receptor (B2R), B1R is upregulated and assumes some of the hemodynamic properties of B2R, indicating that both participate in the maintenance of normal vasoregulation or to development of hypertension. Herein we further evaluate the role of bradykinin in normal blood pressure (BP) regulation and its relationship with other vasoactive factors by selectively blocking its receptors. Six groups of Wistar rats were treated for 3 wk: one control group with vehicle alone, one with concurrent administration of B1R antagonist R-954 (70 μg·kg−1·day−1) and B2R antagonist HOE-140 (500 μg·kg−1·day−1), one with R-954 alone, one with HOE 140 alone, one with concurrent administration of both R-954 and HOE-140 plus the angiotensin antagonist losartan (5 mg·kg−1·day−1), and one with only losartan. BP was measured continuously by radiotelemetry. Only combined administration of B1R and B2R antagonists produced a significant BP increase from a baseline of 107–119 mmHg at end point, which could be partly prevented by losartan and was not associated with change in catecholamines, suggesting no involvement of the sympathoadrenal system. The impact of blockade of bradykinin on other vasoregulating systems was assessed by evaluating gene expression of different vasoactive factors. There was upregulation of the eNOS, AT1 receptor, PGE2 receptor, and tissue kallikrein genes in cardiac and renal tissues, more pronounced when both bradykinin receptors were blocked; significant downregulation of AT2 receptor gene in renal tissues only; and no consistent changes in B1R and B2R genes in either tissue. The results indicate that both B1R and B2R contribute to the maintenance of normal BP, but one can compensate for inhibition of the other, and the chronic inhibition of both leads to significant upregulation in the genes of related vasoactive systems.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3