Pycnogenol, an extract from French maritime pine, suppresses Toll-like receptor 4-mediated expression of adipose differentiation-related protein in macrophages

Author:

Gu Jian-Qiu,Ikuyama Shoichiro,Wei Ping,Fan Bin,Oyama Jun-ichi,Inoguchi Toyoshi,Nishimura Junji

Abstract

Adipose differentiation-related protein (ADRP) is highly expressed in macrophages and human atherosclerotic lesions. We demonstrated that Toll-like receptor (TLR) 4-mediated signals, which are involved in atherosclerosis formation, enhanced the expression of ADRP in macrophages. Lipopolysaccharide (LPS) enhanced the ADRP expression in RAW264.7 cells or peritoneal macrophages from wild-type mice, but not in macrophages from TLR4-deficient mice. Actinomycin D almost completely abolished the LPS effect, whereas cycloheximide decreased the expression at 12 h, indicating that the LPS-induced ADRP expression was stimulated at the transcriptional level and was also mediated by new protein synthesis. LPS enhanced the ADRP promoter activity, in part, by stimulating activator protein (AP)-1 binding to the Ets/AP-1 element. In addition, preceding the increase of the ADRP mRNA, LPS induced the expression of interleukin (IL)-6, IL-1α, and interferon-β mRNAs, all of which stimulated the ADRP expression. Antibodies against these cytokines or inhibitors of c-Jun NH2-terminal kinase and nuclear factor (NF)-κB suppressed the ADRP mRNA level. Thus TLR4 signals stimulate the ADRP expression both in direct and indirect manners. Pycnogenol (PYC), an extract of French maritime pine, suppressed the expression of ADRP and the above-mentioned cytokines. PYC suppressed the ADRP promoter activity and enhancer activity of AP-1 and NF-κB, whereas it did not affect the LPS-induced DNA binding of these factors. In conclusion, TLR4-mediated signals stimulate the ADRP expression in macrophages while PYC antagonizes this process. PYC, a widely used dietary supplement, might be useful for prevention of atherosclerosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3