Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells

Author:

Chisalita Simona I.,Arnqvist Hans J.

Abstract

Micro- and macroangiopathy are major causes of morbidity and mortality in patients with diabetes. Our aim was to characterize IGF-I receptor (IGF-IR) and insulin receptor (IR) in human micro- and macrovascular endothelial cells. Cultured human dermal microvascular endothelial cells (HMVEC) and human aortic endothelial cells (HAEC) were used. Gene expression was measured by quantitative real-time RT-PCR and receptor protein by ligand-binding assay. Phosphorylation of IGF-IR β-subunit was analyzed by immunoprecipitation and Western blot. Glucose metabolism and DNA synthesis was assessed using [3H]glucose and [3H]thymidine incorporation, respectively. We detected gene expression of IGF-IR and IR in HAEC and HMVEC. IGF-IR gene expression was severalfold higher than that of IR. The specific binding of125I-IGF-I was higher than that of125I-insulin in HAEC and HMVEC. Insulin and the new, long-acting insulin analog glargine interacted with the IGF-IR with thousand- and hundred-fold less potency than IGF-I itself. Phosphorylation of the IGF-IR β-subunit was shown in HAEC for IGF-I (10−8M) and insulin (10−6M) and in HMVEC for IGF-I and glargine (10−8M, 10−6M). IGF-I 10−7M stimulated incorporation of [3H]thymidine into DNA, and 10−9–10−7M also the incorporation of [3H]glucose in HMVEC, whereas glargine and insulin had no significant effects at 10−9–10−7M. Human micro- and macrovascular endothelial cells express more IGF-IR than IR. IGF-I and high concentrations of glargine and insulin activates the IGF-IR. Glargine has a higher affinity than insulin for the IGF-IR but probably has no effect on DNA synthesis at concentrations reached in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3