Temporal dynamics of inotropic, chronotropic, and metabolic responses during β1- and β2-AR stimulation in the isolated, perfused rat heart

Author:

McConville P.,Spencer R. G.,Lakatta E. G.

Abstract

During the β-adrenergic receptor (β-AR)-mediated stress response in the heart, the relations between functional responses and metabolism are ill defined, with the distinction between β1- and β2-AR subtypes creating further complexity. Specific outstanding questions include the temporal relation between inotropic and chronotropic responses and their metabolic correlates. We sought to elucidate the relative magnitudes and temporal dynamics of the response to β1- and β2-AR stimulation and the energy expenditure and bioenergetic state related to these responses in the isolated perfused rat heart. Inotropic [left ventricular developed pressure (LVDP) and dP/d t], chronotropic [heart rate (HR)], and metabolic responses were measured during β1- ( n = 9; agonist: norepinephrine) and β2- ( n = 9; agonist: zinterol) AR stimulation. Myocardial oxygen consumption (MV̇o2) was measured using fiber-optic oximetry, and high-energy phosphate levels and intracellular pH were measured using31P NMR spectroscopy. A multiple-dose protocol was used, with near-maximal β-AR stimulation at the highest doses. In both β1and β2groups, there were dose-dependent increases in LVDP, dP/d t, HR, and MV̇o2. The inotropic response showed more rapid onset, washout, and variation during dose than did the chronotropic response and was closely correlated with MV̇o2. This suggests that the myocardial bioenergetic state is more closely related to the inotropic response than to the chronotropic response. In addition, β1-AR stimulation resulted in a greater magnitude and rate of onset of inotropic and MV̇o2responses than did β2-AR stimulation during maximal stimulation. However, a similar decrease in intracellular energy charge was seen in the two groups, consistent with a greater rate of oxidative phosphorylation during β1- than during β2-AR stimulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3