The role of AMP-activated protein kinase in the androgenic potentiation of cannabinoid-induced changes in energy homeostasis

Author:

Borgquist Amanda1,Meza Cecilia1,Wagner Edward J.1

Affiliation:

1. Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California

Abstract

Orexigenic mediators can impact the hypothalamic feeding circuitry via the activation of AMP-dependent protein kinase (AMPK). Given that testosterone is an orexigenic hormone, we hypothesized that androgenic changes in energy balance are due to enhanced cannabinoid-induced inhibition of anorexigenic proopiomelanocortin (POMC) neurons via activation of AMPK. To this end, whole animal experiments were carried out in gonadectomized male guinea pigs treated subcutaneously with either testosterone propionate (TP; 400 μg) or its sesame oil vehicle (0.1 ml). TP-treated animals displayed increases in energy intake associated with increases in meal size. TP also increased several indices of energy expenditure as well as the p-AMPK/AMPK ratio in the arcuate nucleus (ARC) measured 2 and 24 h posttreatment. Subcutaneous administration of the CB1 receptor antagonist AM251 (3 mg/kg) rapidly blocked the hyperphagic effect of TP. This was mimicked largely upon third ventricular administration of AM251 (10 μg). Electrophysiological studies revealed that TP potentiated the ability of the cannabinoid receptor agonist WIN 55,212-2 to decrease the frequency of miniature excitatory postsynaptic currents in ARC neurons. TP also increased the basal frequency of miniature inhibitory postsynaptic currents. In addition, depolarization-induced suppression (DSE) is potentiated in cells from TP-treated animals and blocked by AM251. The AMPK inhibitor compound C attenuated DSE from TP-treated animals, whereas the AMPK activator metformin enhanced DSE from vehicle-treated animals. These effects occurred in a sizable number of identified POMC neurons. Collectively, these results indicate that the androgen-induced increases in energy intake are mediated via an AMPK-dependent augmentation in endocannabinoid tone onto POMC neurons.

Funder

HHS | NIH | National Institute on Drug Abuse (NIDA)

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3