Affiliation:
1. Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
Abstract
Orexigenic mediators can impact the hypothalamic feeding circuitry via the activation of AMP-dependent protein kinase (AMPK). Given that testosterone is an orexigenic hormone, we hypothesized that androgenic changes in energy balance are due to enhanced cannabinoid-induced inhibition of anorexigenic proopiomelanocortin (POMC) neurons via activation of AMPK. To this end, whole animal experiments were carried out in gonadectomized male guinea pigs treated subcutaneously with either testosterone propionate (TP; 400 μg) or its sesame oil vehicle (0.1 ml). TP-treated animals displayed increases in energy intake associated with increases in meal size. TP also increased several indices of energy expenditure as well as the p-AMPK/AMPK ratio in the arcuate nucleus (ARC) measured 2 and 24 h posttreatment. Subcutaneous administration of the CB1 receptor antagonist AM251 (3 mg/kg) rapidly blocked the hyperphagic effect of TP. This was mimicked largely upon third ventricular administration of AM251 (10 μg). Electrophysiological studies revealed that TP potentiated the ability of the cannabinoid receptor agonist WIN 55,212-2 to decrease the frequency of miniature excitatory postsynaptic currents in ARC neurons. TP also increased the basal frequency of miniature inhibitory postsynaptic currents. In addition, depolarization-induced suppression (DSE) is potentiated in cells from TP-treated animals and blocked by AM251. The AMPK inhibitor compound C attenuated DSE from TP-treated animals, whereas the AMPK activator metformin enhanced DSE from vehicle-treated animals. These effects occurred in a sizable number of identified POMC neurons. Collectively, these results indicate that the androgen-induced increases in energy intake are mediated via an AMPK-dependent augmentation in endocannabinoid tone onto POMC neurons.
Funder
HHS | NIH | National Institute on Drug Abuse (NIDA)
HHS | NIH | National Institute of Child Health and Human Development (NICHD)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献