Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep

Author:

Gadhia Monika M.1,Maliszewski Anne M.1,O'Meara Meghan C.1,Thorn Stephanie R.1,Lavezzi Jinny R.1,Limesand Sean W.2,Hay William W.1,Brown Laura D.13,Rozance Paul J.13

Affiliation:

1. Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado;

2. Department of Animal Sciences, University of Arizona, Tucson, Arizona; and

3. Center for Women's Health Research, University of Colorado Denver School of Medicine, Aurora, Colorado

Abstract

Amino acids and glucose acutely stimulate fetal insulin secretion. In isolated adult pancreatic islets, amino acids potentiate glucose-stimulated insulin secretion (GSIS), but whether amino acids have this same effect in the fetus is unknown. Therefore, we tested the effects of increased fetal amino acid supply on GSIS and morphology of the pancreas. We hypothesized that increasing fetal amino acid supply would potentiate GSIS. Singleton fetal sheep received a direct intravenous infusion of an amino acid mixture (AA) or saline (CON) for 10–14 days during late gestation to target a 25–50% increase in fetal branched-chain amino acids (BCAA). Early-phase GSIS increased 150% in the AA group ( P < 0.01), and this difference was sustained for the duration of the hyperglycemic clamp (105 min) ( P < 0.05). Glucose-potentiated arginine-stimulated insulin secretion (ASIS), pancreatic insulin content, and pancreatic glucagon content were similar between groups. β-Cell mass and area were unchanged between groups. Baseline and arginine-stimulated glucagon concentrations were increased in the AA group ( P < 0.05). Pancreatic α-cell mass and area were unchanged. Fetal and pancreatic weights were similar. We conclude that a sustained increase of amino acid supply to the normally growing late-gestation fetus potentiated fetal GSIS but did not affect the morphology or insulin content of the pancreas. We speculate that increased β-cell responsiveness (insulin secretion) following increased amino acid supply may be due to increased generation of secondary messengers in the β-cell. This may be enhanced by the paracrine action of glucagon on the β-cell.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3